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Two-dimensional lattice liquids
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Evidence is presented, based on transfer-matrix and Monte Carlo calculations, for the occurrence of a
gas-liquid phase transition in suitably constructed, two-dimensional lattice-gas models with extended hard-core
repulsion on the triangular lattice. Three different models having this property are identified. The first system
is characterized by nearest-neighbor exclusion and an interparticle attraction ranging from second- to fourth-
neighbor distance. In a further example, the hard core reaches second neighbors, while the attraction ranges
from third to fifth neighbors. Finally, in a third model, the core extends up to fourth neighbors, while the
attraction covers all distances from fifth to eighth neighbors. I discuss how to use these results in order to make
a realistic lattice simulation of the triangular,~111! surface of a fcc solid.

PACS number~s!: 05.70.Ce, 61.20.Gy, 61.20.Ja, 64.70.Dv
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I. INTRODUCTION

In the late 1960s, an important issue in statistical mech
ics was to understand the phase behavior of two-dimensi
~2D! lattice gases of hard-core particles@1#. At that time, the
development of computer architectures with enough mem
and computing power made it possible for the first time
investigate, by the transfer-matrix method, the phase diag
of rather complex 2D lattice systems. The main purpose
these studies was to bridge the gap existing between
phase behavior of elementary Ising-like lattice gases, wh
undergo just a single transition@2#, and the behavior of con
tinuous hard-particle systems which, in 3D, are gener
found in three phases, i.e., solid, liquid, and gas. Afte
burst of interest that lasted a few years, this area was ap
ently abandoned and, in the last three decades, most o
effort has been directed toward an understanding of
mechanisms of 2D melting/freezing in continuous syste
especially in the light of the possible existence of a hexa
phase@3#.

The first model of a 2D homogeneous and isotropic latt
gas with a phase diagram containing a solid, a liquid, an
gas phase was given by Orbanet al. @4#. In this model, which
is defined on the square lattice, hard-core exclusion exte
up to third neighbors, while fourth- and fifth-neighbor pa
ticles experience a mutual attraction. Later, this model w
used as a tool for investigating various issues in surf
physics@5#. To the best of my knowledge, no other model
this kind was found until very recently Poland, using ser
expansions and the Bethe approximation, has presented
dence of similar phase behavior in a 2D lattice-gas sys
defined on the hexagonal lattice@6#.

From all of these studies, it has become clear that
standard three phases are stable on a lattice as long as~a! the
core region encompasses, in addition to the central site,
a number of neighbor sites, and~b! the attractive interaction
outside the core is rather extended as well. If condition~a!
holds but~b! does not, a single first-order phase transition
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generally found from a gaseous low-density phase to a s
high-density phase, possibly turning continuous at high te
perature. In this case, the problem is to reintroduce theliquid
phase. I note that, when condition~a! is not fulfilled ~i.e.,
exclusion is limited to the central site!, it is the solid that is
washed out and, no matter how long is the range of attr
tion, there is only one phase transition left of the gas-liqu
type @6,2#.

In the 3D continuum, the situation is, in many respec
similar. In particular, the spherically symmetric square-w
potential

V~r !5H 1` for r ,s

2e for s,r ,s1d

0 for r .s1d

~1!

is known to undergo a gas-liquid transition only provid
that d/s*1/3 @7#. It would be useful to have a simple crite
rion like this in 2D also.

As yet, no 2D lattice model whose behavior is reminisce
of, say, argon has been reported on the triangular latt
Here, I will fill this gap by showing that, within the class o
models whose solid phase is of a triangular symmetry,
three simplest lattice gases with a stable liquid phase are~see
Fig. 1! ~1! a model with nearest-neighbor exclusion a
second-, third-, and fourth-neighbor interparticle attractio
~2! a model where the hard-core region covers first and s
ond neighbors, while particles that are third, fourth, or fif
neighbors attract each other;~3! a model where any neighbo
site of a particle up to fourth neighbors is forbidden, wh
the attraction ranges from fifth- up to eighth-neighbor d
tance.

Finding ‘‘realistic’’ lattice models in 2D is certainly in-
teresting for academic or pedagogical reasons, but also
the view of constructing a sufficiently simple 3D lattice g
whose surface may resemble that of a continuum mode
fact, there are phenomena occurring at the surface of a
solid that show a delicate interplay between discrete and c
tinuous degrees of freedom, like, for instance, the ea
stages of surface melting. The study of such phenomena
2177 ©2000 The American Physical Society
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2178 PRE 62SANTI PRESTIPINO
benefit greatly from the simulation of a lattice system w
three phases in a layer. I shall present below a 3D lattice
that is aimed at reproducing the entire thermal evolution
the ~111! facet of a rare-gas solid at equilibrium, includin
the preroughening transition of the solid-vapor interface@8#,
the concurrent onset of surface melting@9#, up to roughening
and the growth of a thick liquid film between the solid a
the vapor.

This paper is organized as follows. In Sec. II, after
reconsideration of former results for the square and hexa
nal lattices, a general homogeneous and isotropic lattice
model is introduced, and the method used in order to w
out its phase diagram is carefully outlined. Then, in Sec.
selected cases are analyzed, where there is sharp evid
both from the transfer matrix and from Monte Carlo simu
tion, of a three-phase behavior. Next, in Sec. IV, I discu
how to define a 3D lattice gas having three phases in a la
also. Further remarks and future perspectives are left to
Conclusions.

II. MODEL AND METHOD

I hereby consider statistical systems of indistinguisha
‘‘particles’’ existing on theN sites of a regular 2D lattice
Multiple site occupancy is forbidden, so that occupati
numbersci can be either 0 or 1 (i 51, . . . ,N). The interac-
tion between two particles is assumed to be hard-core re
sive at short distances, while being attractive outside the c
region, at least up to a certain cutoff. As a result, the~strictly
pairwise! Hamiltonian of the system takes the formH
5( i , jV(u i 2 j u)cicj , with V(u i 2 j u)51` if simultaneous

FIG. 1. The three lattice-gas models that are the subject of
present paper. Each of them has a stable liquid phase~see Sec. III!.
In each panel, excluded sites (3) and attractive sites (s) are
shown separately. Attraction reaches fourth neighbors in the t
model, fifth neighbors in the t345 model, and eighth neighbors
the t5678 model. In all cases, no interaction is felt beyond
distance~black dots!. For these models, the ratio between the up
cutoff of the potential and the core radius is smaller for larger c
size. In particular, it isA7 for the t234 model,A3 for the t345
model, and 4/A7 for the t5678 model.
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occupation of sitesi and j is forbidden, whereasV(u i 2 j u)
,0 within the range of distances where the interaction
attractive. It is well known that a large-distance attracti
between the particles is a necessary, albeit not suffici
condition for having a well-defined gas-liquid phase tran
tion.

It is my intention here to find the simplest lattice gas
with a solid, a liquid, and a gas phase on the triangular
tice, under the condition that the solid phase is triangular
well. The simplest case is when hard-core exclusion is l
ited to first-neighbor sites only. In this case, the close
packing densityrmax51/3. A second case is when both fir
and second neighbors of an occupied site are forbidd
which leads to a maximum number density of 1/4. A furth
possibility is to exclude up to fourth-neighbor sites (rmax
51/9). Upon supplying each of these hard-core potent
with a suitably long-ranged attractive tail, it should be po
sible to obtain a stable liquid in all of the three cases abo

In order to keep notation as short as possible, the acron
t34 is used for atriangular lattice model where third- and
fourth-neighbor sites are attractive, while first- and seco
neighbor sites of a particle are forbidden, and so forth.
instance, the model by Orbanet al. will be referred to as the
s45 model ~‘‘s’’ standing for square!, whereas Poland’s
model is here named the h23 model~‘‘h’’ after hexagonal!.
In the following section, I shall provide sharp evidence
three phases in the t234 model, in the t345 model, and in
t5678 model~Fig. 1!. In each of these cases, a shorter ran
of attraction between the particles seemed insufficient to
bilize the liquid phase.

Coming to the method, I use both transfer-matrix~TM!
and grand-canonical Monte Carlo~MC! methods. The TM
approach@10# to the statistical mechanics of a lattice syste
has a long tradition. If the interaction range is sufficien
short, the exact free energy of a system, being infinite in
spatial direction and finite in the other~s!, can be computed
as the logarithm of the maximum eigenvalue of a~transfer!
matrix. In 2D, the simplest case is when this matrix enco
the interaction between a row of sites and the next row al
the infinite strip directiony. In this case, the matrix size
equals the total number of states in a row. More genera
depending on the interaction range, the natural lattice u
~NLU! can consist of just a single row, or a pair of consec
tive rows, or a triplet of rows, etc. Upon increasing the nu
berNx of sites in a row, phase-transition signatures gradua
emerge, thus allowing one to extract the infinite-size beh
ior by scaling arguments. The virtue of the TM method
limited only by the range of the potential used and by t
core extension, which determine in turn what is the ma
mum x size that can be stored in the computer.

It was Runnels that pioneered the use of the TM techni
in the study of 2D lattice gases@11,12#. He and his co-
workers were the first to provide a breakthrough in the co
putational simplification of the problem, by showing how
is possible, using symmetry arguments, to reduce the
size substantially without affecting the maximum eigenva
l1, which is the one controlling the grand canonical press
~i.e., the grand potential! of the infinite strip:

P5
kBT

NNLU
ln l1 , ~2!

e

4
n
s
r
e



w
g
ti

is
b
se
in

th
or
in

C

o
p

s

-
t

oni-

nc-

ce,

as

ide
igh
a

re

ts

-
s

e

g, at

oints
e of
nce
tion

PRE 62 2179TWO-DIMENSIONAL LATTICE LIQUIDS
whereT is the temperature andNNLU is the number of sites
in the NLU. In particular, in the square-lattice case, ro
states can be grouped into equivalence classes bringin
gether states that map onto each other upon a transla
along x and/or a reflection with respect to the strip ax
Then, a matrix that is a condensed form of the TM can
defined, of size equal to the number of equivalence clas
whose maximum eigenvalue is the same as for the orig
TM. I refer to @11,12# for further details. It is only worth
mentioning here that, in the triangular-lattice case, when
x and they axis are both oriented along nearest-neighb
bond directions, the group of symmetry transformations
cludes, besides translations alongx, also reflections with re-
spect to an axis perpendicular tox, passing through the
center of the bottom row in the NLU.

I have complemented the TM study with Metropolis M
data in the grand canonical ensemble~temperatureT and
chemical potentialm being the control parameters!. Typi-
cally, three million MC sweeps are produced forL3L lat-
tices of increasing size, up to a maximum ofL560, with
periodic boundary conditions. I choose thex and they axis
along two neighbor-bond directions forming an angle
120°. A MC sweep here consists of one average attempt
site to change the occupation number fromc to 12c. Occa-
sionally also the Kawasaki type of moves are considered;
Sec. III E below. For fixed values ofb[(kBT)21 and bm,
various quantities are computed:~1! the number densityr
5^N&/L2, N5( ici being the current particle number;~2!
the average energyU5^H&; ~3! the isothermal compressibil
ity KT5r22(]r/]m)T ; and ~4! the specific heat at constan

FIG. 2. TM results for the s45 model of Sec. III A. Data a
shown for two strip sizes, 10~dotted line! and 15~continuous line!,
and for three isotherms,be52,2.1,2.2. From top to bottom, resul
for the reduced compressibility]r/](bm), the average densityr,
and the reduced pressurebP are shown. Two peaks in each com
pressibility curve give the proof of the existence of three phase
this model.
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chemical potential,Cm5TL22(]S/]T)m . In particular, the
latter two quantities are expressed in terms of grand can
cal averages as follows:

rkBTKT5
^~DN!2&

^N&
; ~3!

Cm5
kB

L2
@b2^~DH !2&1~bm!2^~DN!2&

22b3bm~^HN&2^H&^N&!#, ~4!

where DN5N2^N& and DH5H2^H&. Note thatCm.0,
owing to the fact that the grand potential is a concave fu
tion of T.

As a rule, simulation runs are carried out in sequen
starting from the empty lattice at a very lowbm, and then
increasing it progressively. After the run at a givenbm has
been completed, the last configuration obtained is taken
the starting point of the next run at a slightly largerbm
value. Likewise, other runs are performed on the solid s
of the phase diagram, starting from a perfect crystal at a h
enoughbm, which is then reduced step by step. By such

in

FIG. 3. MC data for the s45 model of Sec. III A, along th
isothermbe52. Above: density histograms for a number ofbm
values ranging from25.2 to24 ~the lattice is 40340). In particu-
lar, a dashed line is used for each run of a sequence startin
bm524, from a perfect crystal configuration. Units along they
axis are arbitrary. Below: thermodynamic quantities~exact results
for a strip of 15 sites are also reported as a dotted line!. Two lattice
sizes are compared,L530 (n) andL540 (h). Values ofbm here
are the same as those used for the histograms above. All data p
are affected by an error that is smaller in magnitude than the siz
the symbols. Full markers refer to simulation runs of the seque
starting on the solid side of the phase diagram. While the transi
from the gas to the liquid is very smooth~no singularity apparently
occurs in the thermodynamic potential!, the liquid-solid transition is
sharply discontinuous~with liquid undercooling and hysteresis!.
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2180 PRE 62SANTI PRESTIPINO
method, and providedbm is increased in small enough step
one makes the entrapment of the system into a metas
glassy configuration more unlikely to occur at moderate d
sities. In fact, this would be a more likely outcome if, at a
bm, the run were always started from the empty lattice.

Within the above setup, when freezing happens to be
continuous, undercooling of the liquid is generally observ
~usually, overheating of the solid is not obtained!. This
means that, in the region of liquid-solid coexistence, therm
dynamic quantities are sensitive to whether the run w
started from a liquidlike or a solidlike configuration~hyster-
esis!.

Finally, a useful tool when studying the phase behavior
a lattice-gas system is to monitor, e.g., at a givenb, the
evolution of the MC density histogram as a function ofm. In
a finite system, a roughly Gaussian peak in this histogram
the imprint of a homogeneous phase, while phase coe
ence appears as a bimodal density distribution. Hence, i
far as a liquid region is present in the phase diagram, it w
be possible to discriminate between smooth and first-o
condensation just from looking at the evolution of the de
sity histogram.

III. RESULTS

A. Model s45

First, I reconsider the model of Ref.@4# since it is para-
digmatic of the behavior of a three-phase lattice gas. Thi
a square-lattice model with hard-core exclusion up to th
neighbors, whereas fourth- and fifth-neighbor particles
tract each other with a strength ofe4521.2e ande552e,
respectively (e.0). Within the TM framework, the problem
is to enumerate all the states of two consecutive strip ro
After symmetry reduction, the leading eigenvalue of t
compressed TM is computed by an iterative method tha
far more efficient than full matrix diagonalization. Densi
and compressibility are evaluated from the rawbP data as a
three-point numerical first- and second-order derivative,
spectively (bm is increased by 0.01 at a time!. As a rule, the
number of iterative steps that are necessary to bring
maximum TM eigenvalue to convergence is larger the lar
is thebm derivative of the density.

In Fig. 2, I show results forNx3` strips of two sizes,
Nx510 and 15 ~note that the square solid of densityr
51/5 fits exactly into the strip providedNx is a multiple of
5!. The data of Fig. 2 are relative to three distinct isotherm
be52, 2.1, and 2.2. ForNx515, the two-row states ar
9327 in total, while the number of equivalence classes is
353. From Fig. 2, it is clear that three different phases ex
This is manifested by the existence of two steps in the d
sity plot, which are the fingerprint of gas-liquid and liquid
solid coexistence, or equivalently by the two peaks
]r/](bm), a quantity that is proportional to the isotherm
compressibility. By the way, a peak in this derivative is n
necessarily connected with a second-order transition. W
the system is finite, a compressibility peak may also allud
a first-order transition or it could be simply the result
crossing a disorder line. Only a scaling study of the pe
height can definitely settle this question, allowing one to d
tinguish unambigously between the above three cases@1#.
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The TM results have been checked by MC simulations
Figs. 3 and 4, I show simulation data for two isotherm
be52 and 2.2. Two lattice sizes were considered,L530
and L540. Density histograms and thermodynamic quan
ties show in a rather convincing way that a liquid pha
exists in the samebm interval as suggested by the TM stud
the liquid density being about 80% of the closest-pack
density. Moreover, the transition from gas to liquid is smoo
for be52 ~Fig. 3!, while it is first order forbe52.2 ~Fig. 4!.
Probably no gas-liquid transition line is crossed whenbe
52, sinceKT and Cm show only a poor size dependenc
Finally, the phase transition to the solid is always first ord
and accompanied by hysteresis.

B. Model h23

I have TM results also for the three-phase model of P
land @6#. This is a hexagonal-lattice model where the inte
action range reaches third neighbors. Two different cuts
the hexagonal lattice are considered here; hence strips of
kinds. In one case, two sites being consecutive along
infinite, y direction of the strip are first neighbors of eac
other (a strip!; in the other case, a nearest-neighbor pair
formed by any two consecutive sites alongx (b strip!. In an
a strip, couplings exist between a site of the strip and oth
that lie two rows further along, whereas horizontal intera

FIG. 4. MC data for the s45 model of Sec. III A, along th
isothermbe52.2. Above: density histograms for a number ofbm
values ranging from25.4 to25 ~the lattice is 40340). In particu-
lar, a dashed line is used for each run of a sequence startin
bm525, from a perfect crystal configuration. Units along they
axis are arbitrary. Below: thermodynamic quantities~exact results
for a strip of 15 sites are also reported as a dotted line!. Two lattice
sizes are compared,L530 (n) andL540 (h). Values ofbm here
are the same as for the histograms above. All data points are
fected by an error that is smaller in magnitude than the size of
symbols. Full markers refer to simulation runs of the sequence s
ing on the solid side of the phase diagram. Both transitions h
gas-liquid and liquid-solid, are very sharp.
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PRE 62 2181TWO-DIMENSIONAL LATTICE LIQUIDS
tions are nearest neighbor only; it is the other way around
the case of ab strip, where a row is coupled only with th
next row alongy and next-nearest-neighborx interactions are
present. In both cases, the NLU is made of two rows andNx
is even. Symmetry transformations of the strip arex transla-
tions of an even number of sites and parity-conserving
flections, i.e., (i , j )→(Nx122 i , j ), (i , j ) being the integer
coordinates of the generic site. ForNx510, which is our
maximum strip size, the number of states is originally 151
for an a-strip, while the number of equivalence classes
only 1543 ~for a b-strip, the same numbers are 10508 a
1220, respectively!.

I use the same parameters as in Ref.@6#, i.e., e2
525e/9 ande352e. From Poland’s study, the triple poin
is expected atbe.2.57 andbm.24.28. However, if we
stay too close to the triple point and the strip width is sm
condensation and solidification cannot be disentangled a
single density jump will be observed. Hence, values ofbe
that are far enough from 2.57 must be considered~not too
small, however!. In Fig. 5, results are shown for ana strip at
be51.5 and 2. Forbe52, I show also data forb strips.
When be51.5, thebm derivative of the density has tw
maxima: this gives us the clue that the liquid is inde
present. However, at this temperature, the gas-liquid ‘‘tr
sition’’ associated with the higher peak could just be t
crossing of a disorder line. Forbe52, the liquid-solid peak
becomes the hump of the other peak, while even this fea
is missing in the curves relative tob strips. Clearly, more
information can be obtained from a systematic MC study

FIG. 5. TM results for the h23 model of Sec. III B. Data a
shown for ana strip of two sizes, 8~dotted line! and 10~continuous
line!, and for two isotherms,be51.5 and 2. For the latter, dat
points for b strips are also reported (Nx58, dashed line;Nx510,
dot-dashed line!. From top to bottom, results for the reduced co
pressibility, the average density, and the reduced pressure
shown. The TM evidence for the liquid is less obvious in this ca
than in the s45 model~Fig. 2!. In any case, this evidence is strong
for a strips than forb strips.
in

-

7
s
d

l,
a

-

re

f

the h23 model, which, however, was not attempted he
Nonetheless, I checked at least in a number of cases by
that the TM calculations were done correctly.

C. Model t234

After having checked my computer programs successf
against known cases, I move to the triangular lattice. Firs
consider t2 . . . models. By a series of trial calculations
convinced myself that no liquid is present in the t2 mod
nor in the t23 model. In fact, I was never able to observe
least within the maximum strip size that I could handle n
merically, two distinct peaks in the reduced compressibi
as a function ofbm. Therefore, I jump directly to the t234
model.

For e2521.5e, e3521.2e, ande452e, I plot in Fig. 6
TM results for two strip sizes (Nx56 and 9) and for three
isotherms (be50.7, 0.9, and 1.1!. Nx must be a multiple of
3 in order that the triangular solid~of densityr51/3) fits
exactly into the strip. Given the long potential range, thre
row states must be counted in this case. ForNx59, the origi-
nal TM size is 23 131; after collecting states into equivalen
classes, this number eventually becomes 1392. The cha
teristic two compressibility peaks of a three-phase system
observed for anybe in the interval 0.5– 1.1. Surprisingly
condensation appears to be sharper than solidification.
temperature goes down, the condensation line moves slo
toward the solidification line until, at the triple point, the tw
lines merge together into a single gas-solid transition line

I also ran a MC program of this model forbe50.9. After
equilibration, two million MC sweeps were produced for tw
sizes,L524 andL536 ~see Fig. 7!. Density histograms and

re
e

FIG. 6. TM results for the t234 model of Sec. III C. Data a
shown for two strip sizes, 6~dotted line! and 9~continuous line!,
and for three isotherms,be50.7,0.9,1.1. From top to bottom, re
sults for the reduced compressibility, the average density, and
reduced pressure are shown. The overall structure of the red
compressibility is suggestive of the existence of a liquid ph
spreading over a rather wide density interval.
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2182 PRE 62SANTI PRESTIPINO
thermodynamic averages both indicate that condensatio
strongly discontinuous atbm.24.5. Moreover, a rathe
weak first-order~if not even continuous! liquid-solid transi-
tion is present atbm.22.5. The liquid density is within
70% and 85% of the perfect solid density, while the ene
per liquid particle varies between24.4e and23.9e.

D. Model t345

When the core region embraces second neighbors a
attraction must reach fourth neighbors at least for the liq
to be stable. In fact, the case of a t3 model was alre
studied in Ref.@13#; there, it was proved that only two
phases exist, gas and solid. Moreover, I checked by a se
of trial calculations that the liquid is probably absent also
the t34 model for anye3,2e[e4. In particular, I was never
able to observe, either by the TM or by MC simulation,
two-peaked reduced compressibility as a function ofbm.
Therefore, I promptly move to the t345 model.

For e3521.5e, e4521.2e, ande552e, I plot in Fig. 8
TM results for two strip sizes,Nx510 and 12.Nx must be
even in order that the triangular solid, whose density isr
51/4, fits exactly into the strip. As before, all the states
three consecutive rows are to be counted. ForNx512, the
original TM size is 62 996. After collecting states in

FIG. 7. MC data for the t234 model of Sec. III C, along th
isothermbe50.9. Above: density histograms for a number ofbm
values ranging from24.6 to22 ~the lattice is 36336). In particu-
lar, a dashed line is used for each run of a sequence startin
bm522, from a perfect crystal configuration. Units along they
axis are arbitrary. Below: thermodynamic quantities~exact results
for a strip of 9 sites are also reported as a dotted line!. Two lattice
sizes are compared,L524 (n) and 36 (h). Values ofbm here are
the same as for the histograms above. All data points are affe
by an error that is smaller in magnitude than the size of the s
bols. Full markers refer to simulation runs of the sequence star
on the solid side of the phase diagram. While the gas-liquid tra
tion is very sharp, the liquid-solid transition is at most weakly fi
order.
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equivalence classes, this number is reduced eventuall
2840. The two compressibility peaks of a finite three-pha
system are found for allbe in the interval 0.5– 1. Moreover
the gas-liquid line moves rapidly toward the liquid-solid lin
as temperature goes down, until they merge together in
single gas-solid transition line atbe'1.2 andbm'25.2.
The latter values thus provide rough estimates of the trip
point coordinates.

In order to obtain further, independent evidence of t
stability of the liquid phase, and also more detailed inform
tion about its structure, I ran a MC program of the model
two values ofbe, namely, 1 and 1.1. Numerical data a
shown in Figs. 9 and 10 for two lattice sizes,L536 andL
548. In Fig. 9, the density histograms and various therm
dynamic quantities are plotted forbe51. From this picture,
we see that the gas-liquid transition is very smooth. It is h
to say whether a real singularity~second-order transition!
occurs in the thermodynamic limit, since no strong size
pendence ofKT and Cm is observed close tobm.24.55.
On the other hand, whenbe51.1, condensation is sharpl
discontinuous atbm.24.93, as proved in Fig. 10. Actually
be51.1 appears to be very close to the triple-point tempe
ture. The liquid density is roughly 70– 75 % of the perfe
solid density, while the energy per liquid particle is betwe
23.7e and23.8e.

Perhaps it is worth noting that, in a smaller 24324 lattice,
evidence of a satellite peak atr.0.2 is found in the density
histogram forbe51 ~see Fig. 11! which, however, is prob-
ably not related to the jamming of the system into a gla
state~this peak is too broad to represent a frozen state!. Also,
a regular structure where the closest particles occupy fou
neighbor lattice sites~hence of density 1/7) can be safe
excluded. Therefore, the only solution I see is that of a m
complex phase behavior in the intermediate-density reg
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FIG. 8. TM results for the t345 model of Sec. III D. Data for tw
strip sizes are reported, 10~dashed line! and 12~continuous line!,
and for three isotherms,be50.9,1,1.1. From top to bottom, result
for the reduced compressibility, the average density, and the
duced pressure are shown. Once more, the two-peaked comp
ibility is informative of the existence of a liquid phase~this phase
survives up tobe.1.1).
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of the t345 model for small system sizes, which intriguing
recalls the hexatic-phase scenario@3#.

E. Model t5678

After a careful investigation of several trial cases, I eve
tually reached the conclusion that none of the models t5,
t567, and t678 has a liquid phase. Finally, I found thr
phases in the t5678 model for a particular choice of para
eters, i.e.,e5521.15e, e6521.1e, e7521.05e, and e8
52e. Within the TM framework, states of four rows mu
be enumerated now.Nx is a multiple of 3 in order that the
triangular solid (r51/9) fits exactly into the strip. Strips o
two sizes are considered,Nx512 andNx515. For the latter
case, the number of states is originally 73 131 but, a
proper symmetry contraction, it goes down to 2603. To h
a taste of the rate at which the TM size increases withNx ,
consider that, forNx512, the two numbers above ar
‘‘only’’ 7768 and 385, respectively.

The evidence of a liquid is very sharp for the t56
model; see Fig. 12. Here, TM data are plotted for a num
of isotherms in the rangebe51.4– 1.7. Two clear-cut step
in the density vs chemical potential profile are conclus
evidence for a liquid in this model. Dots superimposed
TM data are MC points for lattices that are very much elo

FIG. 9. MC data for the t345 model of Sec. III D, along th
isothermbe51. Above: density histograms for a number ofbm
values ranging from24.6 to 24.2 ~the lattice is 48348). In par-
ticular, a dashed line is used for each run of a sequence startin
bm524.2, from a perfect crystal configuration. Units along they
axis are arbitrary. Below: thermodynamic quantities~exact results
for a strip of 12 sites are also reported as a dotted line!. Two lattice
sizes are compared,L536 (n) and 48 (h). Values ofbm are the
same as for the histograms above. All data points are affected b
error that is smaller in magnitude than the size of the symbols.
markers refer to simulation runs of the sequence starting on
solid side of the phase diagram. A smooth transition from the ga
the liquid is found atbm.24.53, while the liquid-solid transition
is first order.
-
6,
e
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r
e

r

e
n
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gated in they direction, having 12 and 15 sites in the sho
direction. Comparison between the two sets of data is go
with the only exception being the solid region where M
sampling is poor. Hysteresis is particularly evident here,
different density and compressibility values are found alo
the liquidlike and solidlike trajectories.

Surprisingly, the difference in thermodynamic behav
betweenNx512 and 15 is enormous, considering that t
width of the former is only three sites less than the latter.
particular, the strip of 15 sites is much more reminiscent
the infinite-size behavior. This is particularly transparent
the TM equation of state, which is plotted in Fig. 13. Here
pair of distinct plateaus is present in each curve, correspo
ing to gas-liquid and liquid-solid coexistence, respective
From Figs. 12 and 13, triple-point coordinates are estima
to bebe'2.3 andbm'28.

A glance at Fig. 14 allows one to appreciate the liqu
structure in the t5678 model. This snapshot is taken from
MC run performed atbm525 for a 36336 lattice~periodic
boundary conditions are implied!. It is clear from this picture
that the liquid is an essentially irregular, albeit homog
neous, assemblage of particles containing no crystalline
gion and, only occasionally, holes large enough to ad
another particle. Furthermore, as Fig. 14 well shows,
main difference between the liquid and the solid is no
matter of density, which is pretty much the same for bo
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FIG. 10. MC data for the t345 model of Sec. III D, along th
isothermbe51.1. Above: density histograms for a number ofbm
values ranging from24.96 to 24.86 ~the lattice is 48348). In
particular, a dashed line is used for each run of a sequence sta
at bm524.86, from a perfect crystal configuration. Units along t
y axis are arbitrary. Below: thermodynamic quantities~exact results
for a strip of 12 sites are also reported as a dotted line!. Two lattice
sizes are compared,L536 (n) and 48 (h). Values ofbm are the
same as for the histograms above. All data points are affected b
error that is smaller in magnitude than the size of the symbols.
markers refer to simulation runs of the sequence starting on
solid side of the phase diagram. Both the gas-liquid and the liqu
solid transitions are now discontinuous.
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FIG. 11. MC data for the t345 model of Sec. III D, along th
isothermbe51. Density histograms are plotted for a 24324 lat-
tice. Units along they axis are arbitrary. Two million MC sweep
are produced at equilibrium for eachbm. Runs are performed in
sequence, starting from an empty lattice atbm524.6. A double-
peaked histogram at intermediate densities is indicative of the e
tence of a more complex liquid structure than in larger system si

FIG. 12. TM results for the t5678 model of Sec. III E. Here
show data for two strip sizes, 12~dotted line! and 15~continuous
line!, and for the isotherms atbe51.4,1.5,1.6,1.7. From top to
bottom, results for the reduced compressibility, the average den
and the reduced pressure are shown. Symbols are MC data fobe
51.4, relative to lattices that are very much elongated in thy
direction (Ly520Lx), having 12 and 15 sites in the short directio
These data compare well with TM data. Open squares are f
153300 lattice; they were obtained by performing runs in s
quence, starting from a perfect crystal atbm523.7. All the other
points were obtained from simulation runs that were performed
sequence, starting from the empty lattice atbm525.1. The exis-
tence of two distinct first-order transitions as a function ofbm is
well established in this model.
but rather of symmetry: While the solid predominantly occ
pies one out of nine equivalent triangular sublattices, a liq
system is equally distributed among all of them. Finally
want to stress that, owing to the relatively large core ext
in the t5678 model, the structure of the lattice liquid r
sembles very closely that of a continuous liquid.

Turning to MC simulation, I plot in Fig. 15 a number o
density histograms relative tobe51.4, for two lattice sizes,
L548 andL560. The gas-liquid transition is clearly firs
order here, with a liquid peak that, in the 60360 lattice, is
centered at about 70% of the maximum density. Upon
creasingbm further, a spurious transition to a glassy sta
finally occurs. This can be seen from the drop of the M
acceptance ratio close tobm.24.8, which is the point
where the system density jumps from one peak to the ot
This ‘‘glass transition’’ can be delayed substantially inm if
the latter is made to increase in small enough steps.

For L548, only one peak is present in the histogra
whose likely character is that of a glass~this is because of the
small peak width, which is indicative of a frozen structure!.
The absence of the liquid peak might well be due to
proximity of the liquid density to the random-sequentia
addition threshold for the sameL, i.e., to the existence in
phase space of a huge number of glass configurations in
close neighborhood of the liquid basin. Anyway, this is
sporadic finite-size peculiarity that is already absent in a
360 system and, probably, also in larger lattices.

In Fig. 16, I plot thermodynamic averages for the sa
two sizes. ForL560, the energy per liquid particle is abou
23.1e. The pseudotransition to the glass is now fairly e
dent; it is marked by a small jump in all thermodynam
quantities atbm.24.8. I also notice that, upon reducin
bm to 24.3, the solid jumps to a disordered state which
glassy, not liquid.

Finally, I have checked whether the absence of a genu
liquid in the 48348 system should perhaps be ascribed to
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FIG. 13. TM results for the t5678 model of Sec. III E. The str
is 153` here. The exact equation of state~i.e., pressure vs density!
is plotted for a number of isotherms,be51.4,1.5,1.6,1.7,1.8,1.9
Each plateau here corresponds to a region of two-phase coexist
In particular, note how small is the density interval pertaining to
liquid phase, which is centered aroundr50.08.
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MC algorithm being used. With this aim, I ran a modifie
MC program that, in addition to grand canonical moves, a
allows for ‘‘canonical’’ moves, i.e., attempts for a particle
diffuse toward a nearest-neighbor site in the triangular
tice. As a matter of fact, the new data points are indis
guishable from the previous ones. This makes the impres

FIG. 14. MC snapshot of a liquid configuration in the t56
model of Sec. III E, forbe51.4 andbm525 ~the lattice is 36
336). The average density at thisbm is 0.0737. The fine grid on
the background is the triangular lattice~periodic boundary condi-
tions are implied!. Due to the relatively small ratio between th
lattice constant and the particle diameter, the discreteness o
host space is hardly appreciated from looking only at the partic

FIG. 15. MC data for the t5678 model of Sec. III E, along t
isothermbe51.4. Density histograms for two lattices are plott
for a number ofbm values in the range between25.25 and23.7
~these values are25.25,25.2,25.14,25.12,25.1,25,24.9,24.8,
24.7,24.6,24.3,24.1,23.9,23.7). In particular, I have used
dashed line for any run of a sequence starting atbm523.6 from a
perfect crystal and ending atbm524.4 in a glassy state~see also
Fig. 16!. Units along they axis are arbitrary. After condensation
the 48348 lattice immediately gets trapped into a glassy st
while, on the other hand, the 60360 lattice shows a genuine liqui
structure aroundbm525 (r.0.078; it then also becomes glass
at r.0.089).
o

t-
-
on

stronger that the equilibrium liquid state is really suppres
in a 48348 lattice.

IV. DISCUSSION

As well as their intrinsic value, the above results al
provide a way to build up a 3D lattice-gas system with
realistic surface. As discussed in the Introduction, a sim
fied lattice model of a 3D system with both solidlike~dis-
crete! and liquidlike~continuous! features can be useful for
deeper understanding of many surface phenomena.

For instance, as temperature goes up, the~111! surface of
an argon crystal first undergoes a preroughening~PR! tran-
sition at approximately 85% of the melting temperatu
There are solid-on-solid~SOS! lattice models that deal with
this phenomenon rather accurately@14,8#. For temperatures
above the PR transition and below roughening, the topm
surface layer is roughly half occupied. Hence, liquidlike d
fusion has a chance to grow substantially in the surface la
It is believed that the onset of surface melting is in fa
associated with a strong enhancement of diffusive proce
which, however, cannot be treated in terms of a SOS mo
Therefore, in order to understand the relevance of PR to
beginning of surface melting, a description in terms of
model that embodies both discrete and continuous featur
in order. To this end, a 3D Potts model has recently b
proposed@9#. In view of the results of Sec. III, a more rea
istic description of the same phenomenon, still in terms o
lattice model, can now be advanced.

Take, as an example, the t345 model of Sec. III D. T
nearest-neighbor distance in the perfect solid is 2a, i.e.,

he
s.

e

FIG. 16. MC data for the t5678 model of Sec. III E, along t
isotherm be51.4. Thermodynamic quantities for two lattices,L
548 (n) and 60 (h), are compared, along with exact results for
strip of 15 sites, here reported as a dotted line. All data points
affected by an error that is smaller in magnitude than the size of
symbols. Full markers refer to simulation runs of the sequence s
ing on the solid side of the phase diagram. Both the gas-liquid
the liquid-solid transition are strongly first order. A pseudotran
tion from the liquid to a glass is also present in the larger lattic
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twice the triangular-lattice parameter. Now suppose a st
of triangular lattices is piled up together, in such a way t
each plane is displaced byv5(1/2,A3/6,A6/3)a from the
one below~see Fig. 17!. Then, a perfect fcc crystal oriente
along @111# is obtained by filling one lattice plane of ever
two with spherical particles of diameter 2a, thus giving rise
to a system with an overall density 1/8 of occupied sites

Each site in this 3D lattice has twelve first neighbo
around it. More generally, any of the sites has neighbor
all integer square distances. In particular third, fourth, a
fifth in-plane neighbors will correspond to fourth, seven
and ninth 3D neighbors, respectively~note, however, tha
there are also out-of-plane seventh and ninth neighbors!.

It is now easy to construct a 3D potential which, wh
projected on 2D, gives back the same t345 parameter

FIG. 17. The 3D lattice shown here is made of a stack of tri
gular planes, each obtained from the plane below by applicatio
a suitablev translation. This lattice can host close-packed fcc c
figurations of particles of either size 2a ~one lattice plane being
occupied in every two! or 3a ~one occupied plane in every three!.
n
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Sec. III D. One possibility is to take an attractive potent
that is a linear function of the square distance in the ra
between (2a)2 and (3a)2, such that the strength of attractio
between fourth neighbors is 50% larger than that betw
ninth neighbors, equal in turn toe. Moreover, an infinite
repulsion is assumed for distances below 2a, and no interac-
tion at all beyond 3a. The occurrence of a liquid in this
model can be guessed from the criterion that was mentio
in the Introduction~in fact, the width of the attractive well is
equal to the particle radius, that is to say, larger than o
third of the diameter!. If the liquid were altogether absen
one could anyway supply the t345 model with a longer
tractive tail~which makes the liquid phase more robust! until
a stable liquid was obtained also in 3D. The resulting latt
model would provide a natural tool for studying the interpl
between PR and surface melting, thus competing in accu
with a system of Lennard-Jones particles@15#. In particular,
at variance with a continuous system, a lattice system wo
permit a neater description of PR~i.e., beyond the SOS ap
proximation! and a better investigation of the correlation e
isting between PR and the process of sublattice disorde
in the surface layer.

V. CONCLUSIONS

In the present paper, conclusive evidence has been
vided of the existence of an isostructural, gas-liquid ph
transition in three different models of a homogeneous a
isotropic 2D lattice gas on the triangular lattice. In all cas
the solid structure is triangular as well. From this study
draw the conclusion that, whatever the extent of the ha
core region, there is room for a liquid in a lattice syste
provided that the attractive tail of the potential is sufficien
longer than the core length, the more so the smaller the c
~see Fig. 1, caption!.

Next, I have presented a 3D lattice-gas model whic
propose to be a natural candidate for simulating problem
surface physics where both discrete and continuous deg
of freedom are expected to play a role. In the near futur
plan to use such a model with the view of gaining a bet
~i.e., microscopic! understanding of the onset of surfac
melting in a rare-gas~111! solid surface.
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